Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: PA1225). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square. Chester CHl 2HU, England.

References

Bandoli, G. \& Nicolini, M. (1977). J. Cryst. Mol. Struct. 7, 229-240. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Pirotte, B., de Tullio, P., Lebrun, P., Antoine, M.-H., Fontaine, J., Masereel, B., Schynts, M., Dupont, L., Herchuelz, A. \& Delarge, J. (1993). J. Med. Chem. 36. 3211-3213.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Cnistal Structures. University of Göttingen. Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany

Stoe \& Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1988c). EMPIR. Empirical Absorption Correction Program. Version 1.2. Stoe \& Cie, Darmstadt, Germany.
Tullio, P. de, Pirotte, B., Lebrun, P., Fontaine, J.. Dupont. L.. Antoine, M.-H., Ouedraogo, R., Khelili, S., Maggetto, C., Masereel, B., Diouf, O., Podona, T. \& Delarge. J. (1996). J. Med. Chem. 39. 937-948.

Acta Cryst. (1996). C52, 1743-1745
(5R)-5-[(S)- α-Hydroxybenzyl]-5-(L-men-thyloxy)-4-(1-pyrrolidinyl)furan-2(5H)-one

Inés Alonsoł, Isabel López-Solera \ddagger and Paul R. Raithby
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 IEW, England. E-mail: msolera@ccuam3.sdi.uam.es

(Received 5 June 1995; accepted 22 January 1996)

Abstract

The determination of the structure of the title compound, $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4}$, confirms the R and S absolute configurations at the 5 position of the furanone ring and the α position of the hydroxybenzyl substituent, respectively, taking into account the known configuration of the menthyl moiety.

^[\dagger Present address: Departamento de Química Orgánica, Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain. \ddagger Present address: Departamento de Química Inorgánica, Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.]

Comment

Due to their versatility as intermediates in organic synthesis, furan- $2(5 H)$-ones have been the target compounds of several generally applicable synthetic routes. One of the most useful approaches is the reaction of enolate anions generated from furanone derivatives with electrophiles. In this case, the presence of an electron-releasing group such as alkoxy (Honda, Hayakawa, Kondoh, Okuyama \& Tsubuki, 1991; Pelter, Al-Bayati, Ayoub, Lewis \& Pardasani, 1987) or alkylamino (de Ancos, Fariña, Maestro, Martín \& Vicioso, 1991; Nishide, Aramata, Kamanaka \& Node, 1993; Schlessinger, Iwanowicz \& Springer, 1988; Schlessinger, Mjalli, Adams, Springer \& Hoogsteen, 1992) at the 4 position favours the formation of C5-substituted derivatives. With respect to the stereoselectivity of this reaction, several studies were carried out using substrates with a pyrrolidine derivative as chiral auxiliary group at the C 4 position. Recently, a new 4-enaminofuranone with the chiral group at the 5 position of the furanone ring, 5-(L-menthyloxy)-4-(1-pyrrolidinyl)furan-2(5H)one, has been prepared (Martín \& Mateo, 1994) and the reaction of the enolate anion of this compound with several electrophiles has been studied (Martín \& Mateo, 1995). The determination of the absolute configuration of the main product obtained in the reaction with benzaldehyde, the title compound, (I), has been accomplished by X-ray analysis and the known configuration of the menthyl moiety in the starting material.

(I)

The furanone ring can be considered to be flat, with the mean deviation of the plane for C 4 [0.003 (5) \AA A . The pyrrolidine ring has an envelope conformation with

Fig. 1. The molecular structure of the title compound showing 20% probability displacement ellipsoids for non-H atoms.

C9 0.49 (2) \AA out of the plane defined by the other four atoms. The angle between these rings is $3.5(7)^{\circ}$. Intermolecular hydrogen bonds have been found [$\mathrm{C} 10 \cdots \mathrm{O} 2^{i}$ $3.70(1), \quad \mathrm{H} 10 b \cdots \mathrm{O} 2^{\mathrm{i}} \quad 2.79(1) \AA, \quad \mathrm{C} 10 — \mathrm{H} 10 b \cdots \mathrm{O} 2^{\mathrm{i}}$ $155.2(2)^{\circ} ; \mathrm{C} 22 \ldots \mathrm{O} 2^{\mathrm{i}} 3.38(1), \mathrm{H} 22 \cdots \mathrm{O} 2^{\mathrm{i}} 2.62(1) \AA$, $\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O} 2^{\mathrm{i}} 139.6(2)^{\circ}$; symmetry code: (i) $x, y+1$, z], although none of them involves $\mathrm{O} 4-\mathrm{H} 41$.

Experimental

The crystals were grown by slow evaporation of a hexane solution of the compound prepared according to the procedure described by Martín \& Mateo (1995).

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4}$
$M_{r}=413.54$
Triclinic
$P 1$
$a=7.813(2) \AA$
$b=8.058(2) \AA$
$c=10.212(2) \AA$
$\alpha=92.44$ (3) ${ }^{\circ}$
$\beta=105.51$ (3) ${ }^{\circ}$
$\gamma=106.03(3)^{\circ}$
$V=590.7(2) \AA^{3}$
$Z=1$
$D_{x}=1.163 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-7R four-circle diffractometer
$2 \theta / \omega$ scans
Absorption correction: none
3086 measured reflections
3086 independent reflections
1701 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0742$
$w R\left(F^{2}\right)=0.1683$
$S=1.020$
3086 reflections
275 parameters
Only coordinates of H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0431 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=20-25^{\circ}$
$\mu=0.078 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Transparent block
$0.30 \times 0.27 \times 0.25 \mathrm{~mm}$ Colourless

$$
\begin{aligned}
& \theta_{\max }=22.50^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-8 \rightarrow 8 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

3 standard reflections monitored every 100 reflections intensity decay: none

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.156 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.190 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

			z	$U_{\text {eq }}$
		z	$0.4519(5)$	$0.0418(14)$
O1	$0.5699(7)$	$0.0825(6)$	$0.052(2)$	
C2	$0.7203(13)$	$0.0609(12)$	$0.5479(9)$	$0.052(2)$
O2	$0.7081(8)$	$-0.0769(7)$	$0.5956(6)$	$0.068(2)$
C3	$0.8720(11)$	$0.2156(10)$	$0.5762(8)$	$0.046(2)$

C4	$0.8176(10)$	$0.3345(10)$	$0.4993(8)$	$0.038(2)$
C5	$0.6204(11)$	$0.2554(10)$	$0.4145(8)$	$0.039(2)$
C6	$0.4853(11)$	$0.3504(11)$	$0.4408(8)$	$0.050(2)$
O4	$0.2986(8)$	$0.2584(9)$	$0.3615(7)$	$0.068(2)$
N1	$0.9220(9)$	$0.4963(9)$	$0.4960(7)$	$0.048(2)$
C7	$1.1118(12)$	$0.5656(11)$	$0.5821(11)$	$0.078(3)$
C8	$1.1726(16)$	$0.7512(14)$	$0.5561(15)$	$0.123(5)$
C9	$1.0548(18)$	$0.7573(14)$	$0.4176(14)$	$0.109(4)$
C10	$0.8682(12)$	$0.6241(11)$	$0.4063(10)$	$0.065(3)$
O3	$0.5894(7)$	$0.2422(6)$	$0.2708(5)$	$0.0441(14)$
C11	$0.6791(10)$	$0.1353(10)$	$0.2081(8)$	$0.045(2)$
C12	$0.8267(11)$	$0.2536(10)$	$0.1591(8)$	$0.051(2)$
C13	$0.9136(11)$	$0.1574(11)$	$0.0747(9)$	$0.055(2)$
C14	$0.7546(12)$	$0.0415(12)$	$-0.0453(9)$	$0.065(3)$
C15	$0.6090(12)$	$-0.0878(11)$	$0.0074(9)$	$0.062(3)$
C16	$0.5230(11)$	$0.0094(9)$	$0.0930(8)$	$0.046(2)$
C17	$0.3679(11)$	$-0.1179(11)$	$0.1395(9)$	$0.059(2)$
C18	$0.1921(12)$	$-0.1961(12)$	$0.0174(10)$	$0.089(3)$
C19	$0.4299(12)$	$-0.2604(11)$	$0.2127(9)$	$0.070(3)$
C20	$1.0584(13)$	$0.2820(12)$	$0.0220(10)$	$0.080(3)$
C21	$0.4855(10)$	$0.3635(10)$	$0.5876(9)$	$0.045(2)$
C22	$0.5999(12)$	$0.5128(10)$	$0.6778(10)$	$0.057(3)$
C23	$0.6000(13)$	$0.5274(13)$	$0.8135(10)$	$0.073(3)$
C24	$0.4878(14)$	$0.3977(15)$	$0.8610(10)$	$0.072(3)$
C25	$0.3749(13)$	$0.2519(12)$	$0.7745(10)$	$0.065(3)$
C26	$0.3756(11)$	$0.2340(10)$	$0.6386(8)$	$0.049(2)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Ol}-\mathrm{C} 2$	$1.373(9)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.492(10)$
$\mathrm{O}-\mathrm{C} 5$	$1.437(8)$	$\mathrm{C} 5-\mathrm{O} 3$	$1.416(9)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.221(9)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.534(9)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.419(10)$	$\mathrm{C} 6-\mathrm{O} 4$	$1.433(9)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.351(10)$	$\mathrm{C} 6-\mathrm{C} 21$	$1.498(10)$
$\mathrm{C} 4-\mathrm{N} 1$	$1.341(8)$	$\mathrm{O} 3-\mathrm{C} 11$	$1.473(8)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 5$	$108.7(6)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 4$	$115.8(7)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	$120.0(8)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$104.3(6)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$130.3(9)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6$	$104.6(6)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$109.8(7)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$109.3(6)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$108.5(7)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$114.4(6)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$126.5(7)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 21$	$106.7(7)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$124.7(7)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 5$	$110.2(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$108.8(7)$	$\mathrm{C} 21-\mathrm{C} 6-\mathrm{C} 5$	$112.7(6)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{O} 1$	$108.2(6)$	$\mathrm{C} 5-\mathrm{O} 3-\mathrm{C} 11$	$118.7(6)$

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a). Cell refinement: TEXSAN (Molecular Structure Corporation, 1992b). Data reduction: TEXSAN. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1989). Software used to prepare material for publication: SHELXL93.

We thanks the SERC for funding for the AFC-7 diffractometer, the DGICYT for a grant to IL-S and Europharma for a grant to IA. We also thank Ana I. Mateo for preparing the crystal of this compound.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1288). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Ancos, B. de, Fariña, F., Maestro, M. C., Martín, M. R. \& Vicioso. M. M. (1991). Tetrahedron, 47, 3171-3182.

Honda, T., Hayakawa, T., Kondoh, H., Okuyama, A. \& Tsubuki, M. (1991). Chem. Lett. pp. 1861-1864.

Martín, M. R. \& Mateo, A. I. (1994). Tetrahedron Asymmetry, 5, 1385-1392.
Martín, M. R. \& Mateo, A. I. (1995). Tetrahedron Asymmetry, 6, 1621-1632.
Molecular Structure Corporation (1992a). MSC/AFC Diffractometer Control Software. Revised edition. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nishide, K., Aramata, A., Kamanaka, T. \& Node, M. (1993). Heterocycles, 36, 2237-2240.
Pelter, A., Al-Bayati, R. I. H., Ayoub, M. T., Lewis, W. \& Pardasani, P. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 717-742.

Schlessinger, R. H., Iwanowicz, E. J. \& Springer, J. P. (1988). Tetrahedron Lett. 29, 1489-1492.
Schlessinger, R. H., Mjalli, M. M., Adams, A. D., Springer, J. P. \& Hoogsteen, K. (1992). J. Org. Chem. 57, 2992-2993.
Sheldrick, G. M. (1989). SHELXTL-Plus. Release 4.0 for Siemens R3 Crystallographic Research System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 1745-1747

1:1 Complex Formed by 2-Picoline N Oxide and 4-Nitrophenol

Rodolfo Moreno-Fuquen, ${ }^{a}$ Maria Teresa do Prado Gambardella ${ }^{b}$ and Regina Helena de Almeida Santos ${ }^{c}$
${ }^{a}$ Depto. Quimica -Fac. de Ciencias, Universidad del Valle, Apartado 25360, Cali, Valle, Colombia, ${ }^{b}$ DQFM Instituto de Química de São Carlos, USP, CEP 13560.250, São Carlos, SP, Brazil, and 'DQFM Instituto de Quimica de São Carlos, USP, CEP 13560.250, São Carlos, SP, Brazil. E-mail: romoreno@hypatia.univalle.edu.co

(Received 12 June 1995; accepted 2 January 1996)

Abstract

The 2-picoline N -oxide and 4-nitrophenol moieties in the title complex, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{6} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3}$, are held together by an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{CN}$ hydrogen bond. This crystal structure exhibits partial overlap between the rings of the molecules, in the [110] direction. The complex formed may be described by two planes which contain the 2 -picoline N -oxide and 4 -nitrophenol molecules, respectively.

\section*{Comment}

There is a growing interest in the study and development of organic materials that have non-linear properties, as evidenced by the large number of publications on this

subject (e.g. Pugh, Morley, Nicoud \& Twieg, 1987; Prasad \& Williams, 1991; Marder, Gorman, Tiemann \& Cheng, 1993; Burland, Miller \& Walsh, 1994; Kitazawa, Higuchi, Takahashi, Wada \& Sasabe, 1995).

The present structure determination is one in a series of investigations of molecular complexes based on 2picoline N-oxide (OPNO). The crystal structure reported in this work is part of an ongoing study into the effect of substitution on the packing of the complexes formed from OPNO and hydrogen-bond donors. The formation of the adduct from OPNO and 4-nitrophenol (PNP) may help to explore the possible applications of this system in non-linear optics. Since the literature does not contain enough structural information about OPNO, other similar systems have been analysed. One structure that could be compared with our system is that of the picolinic acid N-oxide (Laing \& Nicholson, 1971). The formation of similar adducts from 3-picoline N -oxide and fumaric acid, 4-picoline N -oxide and 2 nitrobenzoic acid (Gorres, McAfee \& Jacobson, 1975; Moreno-Fuquen, de Almeida Santos \& Valderrama, 1995) have been undertaken. The N-O bond length of 1.324 (2) \AA in the title structure lies between the values of $1.304(6) \AA$, found in the adduct of 3 -picoline N oxide and fumaric acid, and $1.37 \AA$ in the chlorhydrate of pyridinoxide (Tsoucaris, 1961), and is close to the values reported for picolinic acid N-oxide ($1.34 \AA$) and for the adduct of 4 -picoline N -oxide and 2-nitrobenzoic acid $[1.338$ (3) \AA]. The $\mathrm{C}-\mathrm{O}$ bond length of 1.364 (3) \AA in the present complex is very close to that in the PNP molecule ($1.361 \AA$ §; Coppens \& Schmidt, 1965). Other internal distances and angles of the PNP molecule of the adduct are comparable with those reported for the free molecule, furthermore distances and angles for the pyridinoxide ring are comparable with those reported previously (Laing \& Nicholson, 1971; Gorres, McAfee \& Jacobson, 1975; Moreno-Fuquen, de Almeida Santos \& Valderrama, 1995).

The OPNO + PNP adduct and its numbering scheme are shown in Fig. 1. The molecular complex is held together by an intermolecular hydrogen bond between the O 3 of the PNP and the O 4 of the N -oxide group of the OPNO with an O3 \cdots O4 distance equal to 2.600 (3) \AA. The dihedral angle formed by the planes which essentially contain the rings of the molecules is $87.75(8)^{\circ}$. The title complex exhibits overlap between the OPNO and PNP molecules in approximately the [110] direction. The mean interplanar distances between

